پیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی
نویسندگان
چکیده مقاله:
پیشبینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیشبینی آن امری دشوار میباشد. از طرفی سریهای زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدلهای هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و شبکه عصبی خودرگرسیون غیرخطی میتواند برای پیشبینی بر اساس سری های زمانی استفاده گردد. در این پژوهش به منظور استفاده از مزیت های هریک از این مدلها و کاهش خطای پیشبینی، روشی هیبریدی با استفاده از ترکیب خطی نتایج پیشبینی این مدلها آزمون شده است. وزنهای بکاررفته به منظور ترکیب نتایج با استفاده از الگوریتم ژنتیک و همچنین بکارگیری وزنهای مساوی تعیین گردیده است. پس از مشخص شدن قابلیت پیشبینیپذیری سری زمانی مورد مطالعه (با استفاده از آزمون نسبت واریانس)، روش ترکیبی مذکور بر روی مقادیر ماهیانه شاخص قیمت بورس اوراق بهادار تهران بکارگرفته شد. نتایج بدست آمده نشان دهنده کاهش خطای پیشبینیهای صورت گرفته توسط مدل هیبریدی (در حالت استفاده از وزنهای مساوی) نسبت به مدلهای تشکیل دهنده آن است.
منابع مشابه
پیش بینی یک روزه قیمت سهام با استفاده از مدل ترکیبی
پیشبینی بازارهای مالی یکی از سرفصلهای مهم در حوزه مالی و مطالعات پژوهشی است. اهمیت پیشبینی از یک سو و پیچیدگی آن از سوی دیگر باعث شده است که تحقیقات زیادی در این زمینه انجام شود. در این پژوهش از یک روش ترکیبی شامل تبدیل موجک، مدل ARMA-EGARCH و شبکه عصبی مصنوعی برای پیشبینی یک دورهای قیمت سهام در بازارهای ایران و آمریکا استفاده شده است. ابتدا به کمک تبدیل موجک سری زمانی را به چند سری جزئی و...
متن کاملپیش بینی شاخص قیمت بورس سهام با استفاده از شبکه عصبی و تبدیل موجک
شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور می باشد. از این رو پیش بینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژی های سرمایه گذاری، یکی از مسائل مهم به شمار می رود. از جمله روش های پیش بینی پرکاربرد در سری های زمانی مالی، شبکه عصبی می باشد که با توجه به جامعیت این روش و عدم وجود برخی از پیش فرض ها در خصوص داده ها، گسترش زیادی نسبت به روش های آماری یافته است. اما وجود نویز...
متن کاملمدل سازی پیش بینی قیمت سهام با استفاده از شبکه عصبی و مقایسه آن با روشهای پیش بینی ریاضی
استفاده از روشهایی برای پیش بینی وضعیت آینده، همواره دغدغه اصلی اندیشمندان علوم مختلف بوده است. در این راه بطور طبیعی، روشهایی، قابلیت ماندگاری و کاربردی مناسب دارند که دارای کمترین خطای ممکن در پیش بینی باشند. بر این مبنا در سالهای بسیار، روشهایی ریاضی؛ اعم از میانگین ساده، میانگین موزون، میانگین دوبل، رگرسیون و مانند اینها، تنها الگوهایی بود که قاطعانه مورد تأیید و استفاده قرار می گرفت؛ اما ...
متن کاملپیش بینی روند قیمت در بازار سهام با استفاده از الگوریتم جنگل تصادفی
فعالان بورس درصدد دستیابی و به کارگیری روشهایی هستند تا بتوانند با پیشبینی آتی قیمت سهام، سود سرمایه خود را افزایش دهند .بنابراین، ضروری به نظر میرسد که روشهای مناسب، صحیح و متکی به اصول علمی در تعیین قیمت آینده سهام فرآروی افراد سرمایهگذار قرار گیرد. تاکنون روشهای مختلفی جهت نیل به این هدف معرفی شدهاند که اغلب روشهای آماری و هوش مصنوعی هستند. در پژوهش حاضر با استفاده از رویکرد جنگل تصا...
متن کاملپیش بینی اثر متغیرهای کلان بر شاخص قیمت سهام با استفاده از شبکه عصبی gmdh
اقتصاد هر کشور از بخش¬های مختلفی تشکیل شده که روابط بین این بخش¬ها، سمت و سوی اقتصاد آن کشور را مشخص می¬کند. در این میان بازار سرمایه در کنار بازار پول، به عنوان اجزای تشکیل¬دهنده بازارهای مالی بوده و در واقع، شریان¬های اصلی یک اقتصاد محسوب می¬شوند، که مسائلی نظیر رشد و توسعه اقتصادی منوط به عملکرد آنها در اقتصاد است و چنانچه رابطه منطقی بین بازار مالی با بخش های دیگر اقتصادی وجود نداشته باشد، ...
متن کاملارائه مدل پیش بینی شاخص کل قیمت سهام با رویکرد شبکه های عصبی (مطالعه موردی: بورس اوراق بهادار تهران)
هدف تحقیق حاضر ارائه مدل پیشبینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح MLP با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان میدهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیشبینی شاخص ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 35
صفحات 81- 101
تاریخ انتشار 2016-11-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023